Rat GM-CSF ELISA Kit Cat. No. CL0366 96-wells

COMPONENTS

Kit Component	Amount
96-well plate precoated with anti-rat GM-CSF antibody	1 Plate
Protein Standard: Lyophilized recombinant rat GM-CSF	2 tubes, 10 ng/tube
Sample Diluent Buffer	30 ml
Biotinylated Antibody (Anti-rat GM-CSF)	130 µl (100x)
Antibody Diluent Buffer	12ml
Avidin-Biotin-Peroxidase Complex (ABC) Solution	130 µl (100x)
ABC Diluent Buffer	12 ml
Tetramethyllbenzidine (TMB) Color Developing Agent	10 ml
TMB Stop Solution	10 ml

Washing Buffer (not provided): TBS or PBS

0.01M TBS: Add 1.2g Tris, 8.5g NaCl; 450µl of purified acetic acid or 700µl of concentrated hydrochloric acid to 900ml H₂O and adjust pH to 7.2-7.6. Adjust the total volume to 1L.

0.01M PBS: Add 8.5g sodium chloride, 1.4g Na₂HPO₄ and 0.2g NaH₂PO₄ to 900ml distilled H₂O and adjust pH to 7.2-7.6. Adjust the total volume to 1L.

Storage

Store at 4°C. Cell Applications, Inc. recommends using the kit within 6 months of order.

BACKGROUND

Granulocyte macrophage-colony stimulating factor (GM-CSF) is a 22 kDa monomeric cytokine of colony-stimulating factor family and secreted by macrophages, T cells, mast cells, endothelial cells and fibroblasts. It was originally defined by its ability to generate in vitro granulocyte and macrophage colonies from bone marrow precursor cells. GM-CSF also controls dendritic cell and T-cell function, thus linking innate and acquired immunity.¹ Because of the widespread expression of the GM-CSF receptor in hematopoietic cells, it was assumed that both GM-CSF and its receptor were key players in the regulation of steady-state functions. Deletion of either the GM-CSF gene or its receptor showed no obvious deficiency in myeloid cell numbers or production. Rather, a growing body of evidence now suggests that GM-CSF plays a key role in signaling emergency hemopoiesis (predominantly myelopoiesis) in response to infection, including the production of granulocytes and macrophages in the bone marrow and their maintenance, survival, and functional activation at sites of injury or insult. The role of GM-CSF and its receptor in pathology, on the other hand, arises largely as a result of abnormal signaling leading to deregulated myelopoiesis with enhanced proliferation and survival of myeloid precursors, a common feature of myeloproliferative disorders and myeloid leukemias. In addition to its role in hematologic neoplasia, studies with human patients and animal models of disease have now confirmed that GM-CSF is a central player in the cytokine network associated with inflammatory and autoimmune conditions.²

The GM-CSF receptor is a heterodimer that comprises a major binding subunit (GMRalpha) and a major signaling subunit (betac). GM-CSF receptor activation follows general rules observed for other class I cytokine receptors that invoke receptor dimerization and tyrosine transphosphorylation of cytoplasmic domains. In addition, GM-CSF signaling also regulates the activity of Bcl-2 family members.³

References

- Hamilton, J.A. & Anderson, G.P.: Growth Factors 22:225-31, 2004 Hamilton, J.A.: Trends Immunol. 23:403-8, 2002 Chao, J-R. et al: Mol. Biol. Cell. 18:4883–98, 1998
- 3

Target Protein Species Range Specificity

Rat 156pg/ml-10,000pg/ml

Figure 1: GM-CSF Standard Curve. Using the Rat GM-CSF ELISA Kit, O.D. data was graphed against GM-CSF protein concentration. The TMB reaction was incubated at 37°C for 8 min.

ELISA OVERVIEW

Cell Applications ELISA Kits are based on standard sandwich enzyme-linked immunosorbent assay technology. Freshly prepared standards, samples, and solutions are recommended for best results.

- 1. Prepare test samples.
- Prepare a protein standard of the target protein. 2.
- 3. Add test samples and standards to the pre-coated 96-well plate. Do not wash.
- 4. Add biotinylated detection antibodies. Wash.
- 5. Add Avidin-Biotin-Peroxidase Complex (ABC) Solution. Wash.
- Add Tetramethyllbenzidine (TMB) Color Developing Agent, containing 6. HRP substrate.
- Add TMB Stop Solution 7
- 8. Subject the plate to analysis.

NOTES:

- Before using the kit, quick spin tubes to bring down all solution to the bottom of tube.
- Duplicate assay wells are recommended for both standard and sample testing.
- Do not let the 96-well plate dry, this will lead to inactivation of plate components.
- When diluting samples and reagents, ensure that they are mixed completely and evenly.
- Pre-warm diluted ABC and TMB solutions at 37°C for 30 min before use to avoid variable temperature effects.
- For washes, use TBS or PBS. Do not touch well walls.
- A protein standard is included in the kit. A protein standard detection curve should be generated with each experiment, no more than 2 hours prior to the experiment.
- The user will determine sample dilution fold by estimation of target protein amount in samples.

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR CLINICAL USE.

PROTOCOL

I. Plate Washing

Discard the solution in the plate without touching the side walls. Blot the plate onto paper towels or other absorbent material. Soak each well with at least 0.3 ml PBS or TBS buffer for 1~2 minutes. Repeat this process two additional times for a total of three washes.

II. Preparation of Test Samples

Test Sample Processing

- Cell culture supernate, tissue lysate or body fluids: Remove particulates by centrifugation.
- Serum: Allow the serum to clot in a serum separator tube (about 2 hours) at room temperature. Centrifuge at approximately 1000 X g for 10 min.
- **Plasma**: Collect plasma using heparin, EDTA, citrate as an anticoagulant. Centrifuge for 20 min at 2000 x g within 30 min of collection. Analyze immediately or aliquot and store frozen at -20°C.

Sample Dilution Guideline

Estimate the concentration of the target protein in the sample and select a proper dilution factor such that the diluted target protein concentration falls within the standard curve range. Depending on the sample, several trial dilutions may be necessary. Dilute the sample using the provided diluent buffer, mixing well. Suggested working dilutions of samples are as follows:

Target Protein	Sample	Sample	Diluent
Concentration Range	Working Dilution	Vol.	Buffer Vol.
10-100 ng/ml	1:100	1 µl	99 µl
1-1- ng/ml	1:10	10 µl	90 µl
15.6-1000 pg/ml	1:2	50 µl	50 µl
≤15.6 pg/ml	n/a	100µl	n/a

If samples will be assayed within 24 hours, store at 2-8°C. For long-term storage, aliquot and freeze samples at -20°C. Avoid repeated freeze-thaw cycles.

III. Preparation of Reagents

Reconstitution of the Standard

The standard solutions should be prepared no more than 2 hours prior to the experiment. Two tubes of the standard are included in each kit. Use one tube for each experiment.

- 1. 10,000pg/ml of rat GM-CSF standard solution: Add 1 ml sample diluent buffer into one tube, keep the tube at room temperature for 10 min and mix thoroughly.
- 1000pg/ml of rat GM-CSF standard solution: Add 0.1 ml of the above 10ng/ml GM-CSF standard solution into 0.9 ml sample diluent buffer and mix thoroughly.
- 500pg/ml—15.6pg/ml of rat GM-CSF standard solutions: Label 6 Eppendorf tubes with 500pg/ml, 250pg/ml, 125pg/ml, 62.5pg/ml, 31.3pg/ml, 15.6pg/ml, respectively. Aliquot 0.3 ml of the sample diluent buffer into each tube. Add 0.3 ml of the above 1000pg/ml GM-CSF standard solution into 1st tube and mix. Transfer 0.3 ml from 1st tube to 2nd tube and mix. Transfer 0.3 ml from 2nd tube to 3rd tube and mix, and so on.

Preparation of Biotinylated Antibody Working Solution

The solution should be prepared no more than 2 hours prior to the experiment. 1. The total volume should be: 0.1ml/well x (the number of wells). (Allowing

- 0.1-0.2 ml more than total volume)
- 2. Biotinylated antibody should be diluted in 1:100 with the antibody diluent buffer and mixed thoroughly.

Target Protein Species Range Specificity

Rat 156pg/ml-10,000pg/ml No detectable cross-reactivity with any other cytokine.

Preparation of the Avidin-Biotin-Peroxidase Complex (ABC) Working Solution

The solution should be prepared no more than 1 hour prior to the experiment.

- 1. The total volume should be: 0.1ml/well x (the number of wells). (Allowing 0.1-0.2 ml more than total volume)
- 2. Avidin- Biotin-Peroxidase Complex (ABC) should be diluted in 1:100 with the ABC dilution buffer and mixed thoroughly.

IV. ELISA

The ABC working solution and TMB color developing agent must be kept warm at 37° C for 30 min before use. When diluting samples and reagents, they must be mixed completely and evenly. A standard detection curve should be prepared for each experiment. The user will decide sample dilution fold by crude estimation of target protein amount in samples.

- Aliquot 0.1ml per well of the 1000pg/ml, 500pg/ml, 250pg/ml, 125pg/ml, 62.5pg/ml, 31.3pg/ml, 15.6pg/ml rat GM-CSF standard solutions into the precoated 96-well plate. Add 0.1ml of the sample diluent buffer into the control well (Blank well). Add 0.1ml of each properly diluted sample of rat sera, plasma, body fluids, tissue lysates or cell culture supernatants to each empty well. See "Sample Dilution Guideline" for details. We recommend that each rat GM-CSF standard solution and each sample is measured in duplicate.
- 2. Seal the plate with the cover and incubate at 37°C for 90 min.
- Remove the cover, discard plate content, and blot the plate onto paper towels or other absorbent material. Do NOT let the wells completely dry at any time.
- 4. Add 0.1ml of biotinylated anti-rat GM-CSF antibody working solution into each well and incubate the plate at 37°C for 60 min.
- 5. Wash the plate three times with 0.01M TBS or 0.01M PBS, and each time let washing buffer stay in the wells for 1 min. Discard the washing buffer and blot the plate onto paper towels or other absorbent material.
- Add 0.1ml of prepared ABC working solution into each well and incubate the plate at 37°C for 30 min.
- 7. Wash plate 5 times with 0.01M TBS or 0.01M PBS, and each time let washing buffer stay in the wells for 1-2 min. Discard the washing buffer and blot the plate onto paper towels or other absorbent material.
- Add 90 µl of prepared TMB color developing agent into each well and incubate plate at 37°C for 17-30 min (shades of blue can be seen in the wells with the four most concentrated rat GM-CSF standard solutions; the other wells show no obvious color).
- 9. Add 0.1ml of prepared TMB stop solution into each well. The color changes into yellow immediately.
- 10. Read the O.D. absorbance at 450nm in a microplate reader within 30 min after adding the stop solution.

V. Calculating Protein Concentration

- For all wells, determine O.D.450(Relative): O.D.450(Relative) = O.D.450(Reading) – O.D.450(Blank)
 - Plot the standard curve: Plot O.D.450(Relative) of each standard solution (Y) vs. the respective concentration of the standard solution (X). See **Figure 1** for a typical standard curve.
- The target protein concentration in samples can be interpolated from the standard curve. Multiply the interpolated concentration by the dilution factor to obtain the target protein concentration in the sample.

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR CLINICAL USE.

